1st January 2019

STRESS IMPROVEMENT FOR FBARS

Evatec Scientist, Dr. Andrea Mazzalai, explains how know how in deposition of Molybdenum and Ruthenium electrodes with controlled stress now compliments processes for AlScN deposition to bring solutions for full thin film stack production for high performance FBARS on CLUSTERLINE® 200 II.

 

Within the  development of 5th generation wireless systems (5G) the quest for high performance duplexers is driving the development of the latest FBAR devices with resonant frequencies of several GHz. At this range, relatively small in-wafer deviations of the membrane bow can lead to substantial frequency shifts as well as significant variations of the coupling coefficient. For this reason, the strict requirements in terms of stress uniformity are no longer confined to the piezoelectric layer, but are becoming more and more important also for the electrodes.

The FBAR electrode material has to show a good balance between low specific resistivity and high acoustic impedance in order to minimise the resistive losses and to maximise the fraction of mechanical energy confined in the piezoelectric layer. The large majority of designs therefore employ Molybdenum (Mo) but recently Ruthenium (Ru) is also gaining more and more popularity.

We have therefore concentrated our efforts on bringing our Mo and Ru process solutions towards the same outstanding stress control and uniformity levels as we achieve for Al1-xScxN. Our accumulated know-how and experience from developing the piezo-layers themselves represented a valuable base on which we could further design specific process kits for the deposition of Mo and Ru with enhanced stress uniformities on our CLUSTERLINE® 200 II.

 

This is an extract from an article in LAYERS 4. Edition 2018/2019. To read the full article click here